Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. HydroZIP: How Hydrological Knowledge can Be Used to Improve Compression of Hydrological Data
 
research article

HydroZIP: How Hydrological Knowledge can Be Used to Improve Compression of Hydrological Data

Weijs, Steven Vincent  
•
van de Giesen, Nick  
•
Parlange, Marc  
2013
Entropy

From algorithmic information theory, which connects the information content of a data set to the shortest computer program that can produce it, it is known that there are strong analogies between compression, knowledge, inference and prediction. The more we know about a data generating process, the better we can predict and compress the data. A model that is inferred from data should ideally be a compact description of those data. In theory, this means that hydrological knowledge could be incorporated into compression algorithms to more efficiently compress hydrological data and to outperform general purpose compression algorithms. In this study, we develop such a hydrological data compressor, named HydroZIP, and test in practice whether it can outperform general purpose compression algorithms on hydrological data from 431 river basins from the Model Parameter Estimation Experiment (MOPEX) data set. HydroZIP compresses using temporal dependencies and parametric distributions. Resulting file sizes are interpreted as measures of information content, complexity and model adequacy. These results are discussed to illustrate points related to learning from data, overfitting and model complexity.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Weijs_et_al_Hydrozip_Entropy_Journal.pdf

Access type

openaccess

Size

1.16 MB

Format

Adobe PDF

Checksum (MD5)

541949f26c1fa5f0a0c90d66d228a77a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés