Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Comparison of HMM experts with MLP experts in the Full Combination Multi-Band Approach to Robust ASR
 
conference paper

Comparison of HMM experts with MLP experts in the Full Combination Multi-Band Approach to Robust ASR

Hagen, Astrid
•
Morris, Andrew
2000
6th International Conference on Spoken Language Processing (ICSLP 2000)
ICSLP

In this paper we apply the Full Combination (FC) multi-band approach, which has originally been introduced in the framework of posterior-based HMM/ANN (Hidden Markov Model/Artificial Neural Network) hybrid systems, to systems in which the ANN (or Multilayer Perceptron (MLP)) is itself replaced by a Multi Gaussian HMM (MGM). Both systems represent the most widely used statistical models for robust ASR (automatic speech recognition). It is shown how the FC formula for the likelihood--based MGMs can easily be derived from the posterior-based approach by simply applying Bayes' Rule. The experiments show that the Full Combination multi-band system with MGM experts performs better, in all noise conditions tested, than the simple sum and product rules which are normally used. As compared to the baseline full-band system, the FC system shows increased robustness mainly on band-limited noise. The goal of this article is not a performance comparison between Multilayer Perceptrons and Multi Gaussian Models but between the theory of the two approaches, posterior-based vs. likelihood-based FC approach, so results are only given for the MGMs.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

rr00-21.pdf

Access type

openaccess

Size

278.74 KB

Format

Adobe PDF

Checksum (MD5)

a1980085dbe4f84e61f6a58779988881

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés