Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Active Semiconductor Nanophotonics based on Deterministic Quantum Wire and Dot Systems
 
conference paper

Active Semiconductor Nanophotonics based on Deterministic Quantum Wire and Dot Systems

Gallo, Pascal  
•
Atlasov, K.  
•
Calic, M.  
Show more
2011
Active Photonic Materials Iv
Conference on Active Photonic Materials IV

investigate the use of MOVPE-grown ordered nanostructures on non-planar substrates for quantum nano-photonics and quantum electrodynamics-based applications. The mastering of surface adatom fluxes on patterned GaAs substrates allows for forming nanostrucutres confining well-defined charge carrier states. An example given is the formation of quantum dot (QD) molecules tunneled-coupled by quantum wires (QWRs), in which both electron and hole states are hybridized. In addition, it is shown that the high degree of symmetry of QDs grown on patterned (111) B substrates makes them efficient entangled-photons emitters. Thanks to the optimal control over their position and emission wavelength, the fabricated nanostructures can be efficiently coupled to photonic nano-cavities. Low-threshold, optically pumped QWR laser incorporating photonic crystal (PhC) membrane cavities are demonstrated. Moreover, phonon-mediated coupling of QD exciton states to PhC cavities is observed. This approach should be useful for integrating more complex systems of QWRs and QDs for forming a variety of active nano-photonic structures.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés