Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Investigating the contribution of secondary ice production to in-cloud ice crystal numbers
 
research article

Investigating the contribution of secondary ice production to in-cloud ice crystal numbers

Sullivan, S. C.
•
Hoose, C.
•
Nenes, Athanasios  
2017
Journal of Geophysical Research: Atmospheres

In-cloud measurements of ice crystal number concentration can be orders of magnitude higher than the precloud ice nucleating particle number concentration. This disparity may be explained with secondary ice production processes. Several such processes have been proposed, but their relative importance and even the exact physics are not well known. In this work, a six-hydrometeor-class parcel model is developed to investigate the ice crystal number enhancement, both its bounds and its value for different cloud states, from rime splintering and breakup upon graupel-graupel collision. The model also includes ice aggregation and droplet coalescence, ice hydrometeor nonsphericity, and a time delay formulation for hydrometeor growth. Conditions to maximize the breakup contribution, as well as the effects of nonsphericity and turbulence, are discussed. We find that the largest enhancement of ice crystal number occurs for “intermediate” conditions, characterized by moderate updrafts and activation and nucleation rates. In this case, vertical motion is strong enough, and new hydrometeor formation limited enough, to sustain supersaturation as hydrometeors grow to larger sizes. After these larger hydrometeors form at sufficient number concentrations, the ice crystal number can be enhanced by a factor of 104 in some cases relative to the number generated by primary ice nucleation alone. Excluding ice hydrometeor nonsphericity limits secondary production significantly, and the parcel updraft can modulate it by about an order of magnitude. ©2017. American Geophysical Union. All Rights Reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1002/2017JD026546
Author(s)
Sullivan, S. C.
Hoose, C.
Nenes, Athanasios  
Date Issued

2017

Publisher

Blackwell Publishing Ltd

Published in
Journal of Geophysical Research: Atmospheres
Volume

122

Start page

9391

End page

9412

Subjects

aerosol

•

clouds

•

ice multiplication

•

mixed-phase

•

model

•

aerosol

•

cloud

•

cloud classification

•

hydrometeorology

•

ice crystal

•

magnitude

•

nucleation

•

rime

•

supersaturation

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LAPI  
Available on Infoscience
October 15, 2018
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/148868
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés