Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Photo-crosslinked copolymers of 2-hydroxyethyl methacrylate, poly(ethylene glycol) tetra-acrylate and ethylene dimethacrylate for improving biocompatibility of biosensors
 
research article

Photo-crosslinked copolymers of 2-hydroxyethyl methacrylate, poly(ethylene glycol) tetra-acrylate and ethylene dimethacrylate for improving biocompatibility of biosensors

Quinn, C. P.
•
Pathak, C. P.
•
Heller, A.
Show more
1995
Biomaterials

A copolymer containing 88% 2-hydroxyethyl methacrylate (HEMA), 9% poly(ethylene glycol) (MW 18.5 kDa) tetra-acrylate and 3% ethylene dimethacrylate was prepared and evaluated for use as a biocompatible interface between glucose biosensors and tissue in the rat. The glucose sensor utilizes glucose oxidase that is electrically 'wired' to a gold current collector by a reduction-oxidation polymer. Coatings of the copolymer were crosslinked in situ on the sensors using long wavelength ultraviolet light and 2,2-dimethoxy-2-phenyl-acetophenone as the initiator. The effect these films had on the current response to glucose was measured. Over a glucose concentration range of 0-30 mM, the average percentage decrease in response was 45 +/- 28% (mean +/- 95% confidence interval) at 37 degrees C for films that were about 0.1 mm thick, an acceptable value. Copolymer-treated and control electrodes were implanted in the intrascapular subcutaneous tissue of male Sprague-Dawley rats for three days. The explanted samples were evaluated using scanning electron microscopy. The control electrodes were highly encapsulated with fibrous material, while the copolymer-treated electrodes induced much less encapsulation. The results show this copolymer to be a candidate as a biocompatible coating for electrically wired oxidoreductase-based subcutaneous biosensors. [on SciFinder (R)]

  • Details
  • Metrics
Type
research article
DOI
10.1016/0142-9612(95)98856-9
Author(s)
Quinn, C. P.
Pathak, C. P.
Heller, A.
Hubbell, J. A.  
Date Issued

1995

Published in
Biomaterials
Volume

16

Issue

5

Start page

389

End page

96

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LMRP  
Available on Infoscience
February 27, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/226494
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés