Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Large impact of phonon lineshapes on the superconductivity of solid hydrogen
 
research article

Large impact of phonon lineshapes on the superconductivity of solid hydrogen

Dangic, Dorde
•
Monacelli, Lorenzo  
•
Bianco, Raffaello
Show more
May 9, 2024
Communications Physics

Phonon anharmonicity plays a crucial role in determining the stability and vibrational properties of high-pressure hydrides. Furthermore, strong anharmonicity can render phonon quasiparticle picture obsolete questioning standard approaches for modeling superconductivity in these material systems. In this work, we show the effects of non-Lorentzian phonon lineshapes on the superconductivity of high-pressure solid hydrogen. We calculate the superconducting critical temperature TC ab initio considering the full phonon spectral function and show that it overall enhances the TC estimate. The anharmonicity-induced phonon softening exhibited in spectral functions increases the estimate of the critical temperature, while the broadening of phonon lines due to phonon-phonon interaction decreases it. Our calculations also reveal that superconductivity emerges in hydrogen in the C m c a - 12 molecular phase VI at pressures between 450 and 500 GPa and explain the disagreement between the previous theoretical results and experiments.|This work studies the effects of non-gaussian phonon lineshapes from stochastic self-consistent harmonic approximation on the superconducting critical temperature (Tc) of hydrogen at high pressure. It predicts superconductivity in the Cmca-12 phase between 450 and 500 GPa and an increase in Tc for both the Cmca-12 and the I41/amd-2 structures compared to harmonic calculations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

document.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

972.37 KB

Format

Adobe PDF

Checksum (MD5)

0936d2e10ea21f6312033ce25588bc44

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés