Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Molecular dynamics simulations of MRI-relevant GdIII chelates: direct access to outer-sphere relaxivity
 
Loading...
Thumbnail Image
research article

Molecular dynamics simulations of MRI-relevant GdIII chelates: direct access to outer-sphere relaxivity

Borel, Alain  
•
Helm, Lothar  
•
Merbach, Andre E.  
2001
Chemistry - A European Journal

he structure and dynamics of the surrounding water were studied through molecular dynamics (MD) simulations for several GdIII polyaminocarboxylate and polyaminophosphonate complexes in aqueous solution. The radial distribution functions (rdf) show that a few water molecules are bonded to the ligand through hydrogen bonds to hydrophilic groups such as carboxylates and phosphonates. Residence times are of the order of 20-25 ps for the polyaminocarboxylate and 56 ps for the polyaminophosphonate chelates. No preferred orientation or bonding of water molecules is observed in the hydrophobic region of the anisotropic macrocyclic complexes. Our rdf allow calculation of the outer-sphere contribution to the nuclear magnetic resonance dispersion (NMRD) profiles using Freed's finite differences method, including electronic relaxation. The results show that the commonly used analytical force-free model is only an empirical relationship. When experimental outer-sphere NMRD profiles are available ([Gd(teta)]- and [Gd(dotp)]5- (teta= N,N,N,N-tetracarboxymethyl-1,4,8,11-tetraazacyclotetradecane; dotp=N,N,N,N-tetraphosphonatomethyl-1,4,7,10-tetraazacyclododecane) the calculated curves are in good agreement. In the case of [Gd(teta)]-, the comparison with the experimental NMRD profile has led us to predict a very fast electronic relaxation, which has been confirmed by the EPR spectrum.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

md1_all.pdf

Type

Postprint

Access type

openaccess

Size

1.76 MB

Format

Adobe PDF

Checksum (MD5)

dab3400581eb067905908f8eed8175d1

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés