Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. High-dimensional non-convex landscapes and gradient descent dynamics
 
research article

High-dimensional non-convex landscapes and gradient descent dynamics

Bonnaire, Tony
•
Ghio, Davide  
•
Krishnamurthy, Kamesh
Show more
October 31, 2024
Journal of Statistical Mechanics: Theory and Experiment

In these lecture notes we present different methods and concepts developed in statistical physics to analyze gradient descent dynamics in high-dimensional non-convex landscapes. Our aim is to show how approaches developed in physics, mainly statistical physics of disordered systems, can be used to tackle open questions on high-dimensional dynamics in machine learning.

  • Details
  • Metrics
Type
research article
DOI
10.1088/1742-5468/ad2929
Scopus ID

2-s2.0-85208366931

Author(s)
Bonnaire, Tony

Laboratoire de Physique de l’Ecole Normale Supérieure

Ghio, Davide  

École Polytechnique Fédérale de Lausanne

Krishnamurthy, Kamesh

Princeton University

Mignacco, Francesca

Princeton University

Yamamura, Atsushi

Stanford University

Biroli, Giulio

Laboratoire de Physique de l’Ecole Normale Supérieure

Date Issued

2024-10-31

Published in
Journal of Statistical Mechanics: Theory and Experiment
Volume

2024

Issue

10

Article Number

104004

Subjects

deep learning

•

energy landscapes

•

machine learning

•

random matrix theory and extensions

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
IDEPHICS1  
FunderFunding(s)Grant NumberGrant URL

Agence Nationale de la Recherche

ANR-19-P3IA-0001

Simons Foundation

454 935

National Science Foundation

PHY-1734 030

Available on Infoscience
January 25, 2025
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/244069
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés