Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. PGC-1 alpha activity in nigral dopamine neurons determines vulnerability to alpha-synuclein
 
research article

PGC-1 alpha activity in nigral dopamine neurons determines vulnerability to alpha-synuclein

Ciron, Carine  
•
Zheng, Lu  
•
Bobela, Wojciech
Show more
2015
Acta Neuropathologica Communications

Introduction: Mitochondrial dysfunction and oxidative stress are critical factors in the pathogenesis of age-dependent neurodegenerative diseases. PGC-1 alpha, a master regulator of mitochondrial biogenesis and cellular antioxidant defense, has emerged as a possible therapeutic target for Parkinson's disease, with important roles in the function and survival of dopaminergic neurons in the substantia nigra. The objective of this study is to determine if the loss of PGC-1 alpha activity contributes to alpha-synuclein-induced degeneration. Results: We explore the vulnerability of PGC-1 alpha null mice to the accumulation of human alpha-synuclein in nigral neurons, and assess the neuroprotective effect of AAV-mediated PGC-1 alpha expression in this experimental model. Using neuronal cultures derived from these mice, mitochondrial respiration and production of reactive oxygen species are assessed in conditions of human alpha-synuclein overexpression. We find ultrastructural evidence for abnormal mitochondria and fragmented endoplasmic reticulum in the nigral dopaminergic neurons of PGC-1 alpha null mice. Furthermore, PGC-1 alpha null nigral neurons are more prone to degenerate following overexpression of human alpha-synuclein, an effect more apparent in male mice. PGC-1 alpha overexpression restores mitochondrial morphology, oxidative stress detoxification and basal respiration, which is consistent with the observed neuroprotection against alpha-synuclein toxicity in male PGC-1 alpha null mice. Conclusions: Altogether, our results highlight an important role for PGC-1 alpha in controlling the mitochondrial function of nigral neurons accumulating alpha-synuclein, which may be critical for gender-dependent vulnerability to Parkinson's disease.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s40478-015-0200-8.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.36 MB

Format

Adobe PDF

Checksum (MD5)

5db086e936a6769e18d00d5001240144

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés