Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Clustered planarity testing revisited
 
research article

Clustered planarity testing revisited

Fulek, Radoslav  
•
Kynčl, Jan
•
Malinović, Igor
Show more
2015
The Electronic Journal of Combinatorics

The Hanani--Tutte theorem is a classical result proved for the first time in the 1930s that characterizes planar graphs as graphs that admit a drawing in the plane in which every pair of edges not sharing a vertex cross an even number of times. We generalize this result to clustered graphs with two disjoint clusters, and show that a straightforward extension to flat clustered graphs with three or more disjoint clusters is not possible. For general clustered graphs we show a variant of the Hanani--Tutte theorem in the case when each cluster induces a connected subgraph. Di Battista and Frati proved that clustered planarity of embedded clustered graphs whose every face is incident with at most five vertices can be tested in polynomial time. We give a new and short proof of this result, using the matroid intersection algorithm.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1305.4519v5.pdf

Access type

openaccess

Size

536.85 KB

Format

Adobe PDF

Checksum (MD5)

dc98fe73d52aa29b9717120a03f2e220

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés