Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A Machine Learning-Based Strategy for Efficient Resource Management of Video Encoding on Heterogeneous MPSoCs
 
conference paper not in proceedings

A Machine Learning-Based Strategy for Efficient Resource Management of Video Encoding on Heterogeneous MPSoCs

Iranfar, Arman  
•
Simon, William Andrew  
•
Zapater Sancho, Marina  
Show more
2018
International Symposium on Circuits and Systems (ISCAS)

The design of new streaming systems is becoming a major area of research to deploy services targeted in the Internet-of-Things (IoT) era. In this context, the new High Efficiency Video Coding (HEVC) standard provides high efficiency and scalability of quality at the cost of increased computational complexity for edge nodes, which is a new challenge for the design of IoT systems. The usage of hardware acceleration in conjunction with general-purpose cores in Multiprocessor Systems-on-Chip (MPSoCs) is a promising solution to create heterogeneous computing systems to manage the complexity of real-time streaming for high-end IoT systems, achieving higher throughput and power efficiency when compared to conventional processors alone. Furthermore, Machine Learning (ML) provides a promising solution to efficiently use this next-generation of heterogeneous MPSoC designs that the EDA industry is developing by dynamically optimizing system performance under diverse requirements such as frame resolution, search area, operating frequency and stream allocation. In this work, we propose an ML-based approach for stream allocation and Dynamic Voltage and Frequency Scaling (DVFS) management on a heterogeneous MPSoC composed of ARM cores and FPGA fabric containing hardware accelerators for the motion estimation of HEVC encoding. Our experiments on a Zynq7000 SoC outline 20% higher throughput when compared to the state-of-the-art streaming systems for next-generation IoT devices.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2018_ISCASS_ML(2).pdf

Access type

openaccess

Size

472.26 KB

Format

Adobe PDF

Checksum (MD5)

9e19f5a3238d55616824f68f321e19e7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés