Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Single photon emission and recombination dynamics in self-assembled GaN/AlN quantum dots
 
review article

Single photon emission and recombination dynamics in self-assembled GaN/AlN quantum dots

Stachurski, Johann  
•
Tamariz, Sebastian  
•
Callsen, Gordon  
Show more
April 28, 2022
Light-Science & Applications

Y III-nitride quantum dots (QDs) are a promising system actively studied for their ability to maintain single photon emission up to room temperature. Here, we report on the evolution of the emission properties of self-assembled GaN/ AlN QDs for temperatures ranging from 5 to 300 K. We carefully track the photoluminescence of a single QD and measure an optimum single photon purity of g((2))(0) = 0.05 +/- 0.02 at 5 K and 0.17 +/- 0.08 at 300 K. We complement this study with temperature dependent time-resolved photoluminescence measurements (TRPL) performed on a QD ensemble to further investigate the exciton recombination dynamics of such polar zero-dimensional nanostructures. By comparing our results to past reports, we emphasize the complexity of recombination processes in this system. Instead of the more conventional mono-exponential decay typical of exciton recombination, TRPL transients display a bi-exponential feature with short- and long-lived components that persist in the low excitation regime. From the temperature insensitivity of the long-lived excitonic component, we first discard the interplay of dark-to-bright state refilling in the exciton recombination process. Besides, this temperature-invariance also highlights the absence of nonradiative exciton recombinations, a likely direct consequence of the strong carrier confinement observed in GaN/AlN QDs up to 300 K. Overall, our results support the viability of these dots as a potential single-photon source for quantum applications at room temperature.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41377-022-00799-4.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

3.35 MB

Format

Adobe PDF

Checksum (MD5)

079b4cfafc735adc9182708d870dd31d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés