Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Diabatic free energy curves and coordination fluctuations for the aqueous Ag(+)Ag(2+) redox couple: A biased Born-Oppenheimer molecular dynamics investigation
 
research article

Diabatic free energy curves and coordination fluctuations for the aqueous Ag(+)Ag(2+) redox couple: A biased Born-Oppenheimer molecular dynamics investigation

Blumberger, Jochen
•
Tavernelli, Ivano  
•
Klein Michael, L.
Show more
2006
The Journal of Chemical Physics

Biased Born-Oppenheimer molecular dynamics simulations are performed to compute redox potential and free energy curves for the redox half reaction Ag(+)-->Ag(2+)+e(-) in aqueous solution. The potential energy surfaces of reactant and product state are linearly coupled and the system transferred from the reduced state to the oxidized state by variation of the coupling parameter from 0 to 1. The redox potential is obtained by thermodynamic integration of the average ionization energy of Ag(+). Diabatic free energy curves of reduced (R) and oxidized (O) states are obtained to good statistical accuracy by reweighting and combining the set of biased distributions of the ionization energy. The diabatic free energy curves of Ag(+) and Ag(2+) are parabolic over a wide range of the reaction coordinate in agreement with the linear response assumption that underlies Marcus theory. However, we observe deviations from parabolic behavior in the equilibrium region of Ag(+) and find different values for the reorganization free energy of R (1.4 eV) and O (0.9 eV). The computed reorganization free energy of Ag(2+) is in good agreement with the experimental estimate of 0.9-1.2 eV obtained from photoelectron spectroscopy. As suggested by our calculations, the moderate deviation from linear response behavior found for Ag(+) is likely related to the highly fluxional solvation shell of this ion, which exhibits water exchange reactions on the picosecond time scale of the present molecular dynamics simulation. [on SciFinder (R)]

  • Details
  • Metrics
Type
research article
DOI
10.1063/1.2162881
Web of Science ID

WOS:000235309400032

Author(s)
Blumberger, Jochen
Tavernelli, Ivano  
Klein Michael, L.
Sprik, Michiel
Date Issued

2006

Published in
The Journal of Chemical Physics
Volume

124

Issue

6

Article Number

64507

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LCBC  
Available on Infoscience
February 27, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/226245
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés