Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. On the manufacturing of compliant foil bearings
 
research article

On the manufacturing of compliant foil bearings

Shalash, Karim
•
Schiffmann, Jürg
2017
Journal of Manufacturing Processes

The fabrication of foil bearings is challenging due to the dependence on sheet metal forming to produce the compliant structure. This paper is an attempt to shed light into the foil bearing manufacturing know-how. Design of experiments techniques are used to quantify the effects of the different manufacturing parameters, as well as defining an optimum manufacturing procedure. The effect of manufacturing noise on the static performance of foil bearings is quantified using a Monte Carlo simulation of a bump foil stiffness model. A non-intrusive optical measurement technique which has been developed to measure the formed bump foils is also presented. An uncertainty quantification was performed for the produced foils, showing large uncertainty in the bump dimensions, which significantly affect both nominal bearing clearance and compliance. Finite element simulations are used to model the bump foil forming process that would present potential problems during fabrication, suggesting sharp bends in the bump foil as the main driver for manufacturing deviations. Based on this outcome an improved design for the compliant bump foil with reduced curvature is proposed, manufactured and measured. The novel design allows to reduce springback error by 69% compared to classical bump foils and thus offers an equivalent yet more robust foil bearing design.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Shalah_2017_Elsevier_JMP_postprint.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

CC BY-NC-ND

Size

2.34 MB

Format

Adobe PDF

Checksum (MD5)

611f635ece43bacd3df8e2c1a3c8382d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés