Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Teapot: Language Support for Writing Memory Coherence Protocols
 
conference paper

Teapot: Language Support for Writing Memory Coherence Protocols

Chandra, Satish
•
Richards, Brad
•
Larus, James R.
1996
SIGPLAN 1996 Conference on Programming Language Design and Implementation

Recent shared-memory parallel computer systems offer the exciting possibility of customizing memory coherence protocols to fit an application's semantics and sharing patterns. Custom protocols have been used to achieve message-passing performance---while retaining the convenient programming model of a global address space---and to implement high-level language constructs. Unfortunately, coherence protocols written in a conventional language such as C are difficult to write, debug, understand, or modify. This paper describes Teapot, a small, domain-specific language for writing coherence protocols. Teapot uses continuations to help reduce the complexity of writing protocols. Simple static analysis in the Teapot compiler eliminates much of the overhead of continuations and results in protocols that run nearly as fast as hand-written C code. A Teapot specification can be compiled both to an executable coherence protocol and to input for a model checking system, which permits the specification to be verified. We report our experiences coding and verifying several protocols written in Teapot, along with measurements of the overhead incurred by writing a protocol in a higher-level language.

  • Details
  • Metrics
Type
conference paper
DOI
10.1145/231379.231430
Author(s)
Chandra, Satish
•
Richards, Brad
•
Larus, James R.
Date Issued

1996

Publisher

ACM

Published in
SIGPLAN 1996 Conference on Programming Language Design and Implementation
Start page

237

End page

248

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
VLSC  
Available on Infoscience
December 23, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/98695
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés