Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Estimation of Blood Pressure and Pulse Transit Time Using Your Smartphone
 
conference paper

Estimation of Blood Pressure and Pulse Transit Time Using Your Smartphone

Junior, Alair Dias
•
Murali, Srinivasan  
•
Rincon Vallejos, Francisco Javier  
Show more
2015
Proceedings of the 18th IEEE/Euromicro Conference On Digital System Design (DSD 2015)
18th IEEE/Euromicro Conference On Digital System Design (DSD 2015)

It is widely recognized today that there is an alarming rise of lifestyle-induced chronic diseases (e.g., type II diabetes) in our society. Therefore, a strong need exists for cost-effective and non-invasive devices that can measure blood pressure (BP) to monitor, diagnose and follow-up patients at risk, but also healthy population in general. One promising method for arterial BP estimation is to measure a surrogate marker of it, such as, Pulse Transit Time (PTT) and derive pressure values from it. However, current methods for measuring PTT require complex sensing and analysis circuitry and the related medical devices are expensive and inconvenient for the user to wear. In this paper, we present a new smartphone-based method to estimate PTT reliably and subsequently BP from the baseline sensors on smartphones. This new approach involves determining PTT by simultaneously measuring the time the blood leaves the heart, by recording the heart sound using the standard microphone of the phone and the time it reaches the finger, by measuring the pulse wave using the phone’s camera. Moreover, we also describe algorithms that can be executed directly on current smartphones to obtain clean and robust heart sound signals and to extract the pulse wave characteristics using smartphones. We also present methods to ensure a synchronous capture of the waveforms, which is essential to obtain reliable PTT values with inexpensive sensors. Our experiments show that the computational overhead of the proposed two-phase processing method is minimum, with the ability to reliably measure the PTT values in a fully accurate (beat-to-beat) fashion using directly state-of-the-art smartphones as medical devices.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

DSD2015-07302267.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

305.48 KB

Format

Adobe PDF

Checksum (MD5)

4a68c8a7b2545f66722a811eb5185b7c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés