Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Weak nonlinearity for strong non-normality
 
research article

Weak nonlinearity for strong non-normality

Ducimetière, Yves-Marie  
•
Boujo, Edouard  
•
Gallaire, François  
2022
Journal of Fluid Mechanics

We propose a theoretical approach to derive amplitude equations governing the weakly nonlinear evolution of non-normal dynamical systems, when they experience transient growth or respond to harmonic forcing. This approach reconciles the non-modal nature of these growth mechanisms and the need for a centre manifold to project the leading-order dynamics. Under the hypothesis of strong non-normality, we take advantage of the fact that small operator perturbations suffice to make the inverse resolvent and the inverse propagator singular, which we encompass in a multiple-scale asymptotic expansion. The methodology is outlined for a generic nonlinear dynamical system, and four application cases highlight common non-normal mechanisms in hydrodynamics: the streamwise convective non-normal amplification in the flow past a backward-facing step, and the Orr and lift-up mechanisms in the plane Poiseuille flow.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

weak-nonlinearity-for-strong-non-normality.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.69 MB

Format

Adobe PDF

Checksum (MD5)

5dd8081c9828835e0a72c831c494fce2

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés