Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. On the Influence of Bias-Correction on Distributed Stochastic Optimization
 
research article

On the Influence of Bias-Correction on Distributed Stochastic Optimization

Yuan, Kun
•
Alghunaim, Sulaiman A.
•
Ying, Bicheng
Show more
January 1, 2020
Ieee Transactions On Signal Processing

Various bias-correction methods such as EXTRA, gradient tracking methods, and exact diffusion have been proposed recently to solve distributed deterministic optimization problems. These methods employ constant step-sizes and converge linearly to the exact solution under proper conditions. However, their performance under stochastic and adaptive settings is less explored. It is still unknown whether, when and why these bias-correction methods can outperform their traditional counterparts with noisy gradient and constant step-sizes. This work studies the performance of exact diffusion under the stochastic and adaptive setting, and provides conditions under which exact diffusion has superior steady-state mean-square deviation (MSD) performance than traditional algorithms without bias-correction. In particular, it is proven that this superiority is more evident over sparsely-connected network topologies such as lines, cycles, or grids. Conditions are also provided under which exact diffusion method can or degrade the performance of traditional methods. Simulations are provided to validate the theoretical findings.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés