Pseudotachylyte Alteration and the Rapid Fade of Earthquake Scars From the Geological Record
Tectonic pseudotachylytes are solidified frictional melts produced on faults during earthquakes and are robust markers of seismic slip events. Nonetheless, pseudotachylytes are apparently uncommon fault rocks, because they are either rarely produced or are easily lost from the geological record. To solve this conundrum, long-lasting (18-35 days) hydrothermal alteration tests were performed on fresh pseudotachylytes produced by sliding solid rock samples at seismic slip rates in the laboratory. After all tests, the pseudotachylytes were heavily altered with dissolution of the matrix and neo-formation of clay aggregates. Post-alteration products closely resemble natural altered pseudotachylytes and associated ultracataclasites (i.e., fault rocks affected by fracturing in the absence of melting), demonstrating that the preservation potential of original pseudotachylyte microstructures is very short, days to months, in the presence of hydrothermal fluids. As a consequence, pseudotachylytes might be significantly underrepresented in the geological record, and on-fault frictional melting during earthquakes is likely to occur more commonly than generally believed.
WOS:000595819700072
2020-11-28
47
22
e2020GL090020
REVIEWED