Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Compressive sensing recovery of spike trains using a structured sparsity model
 
conference paper not in proceedings

Compressive sensing recovery of spike trains using a structured sparsity model

Hegde, C.
•
Duarte, M. F.
•
Cevher, Volkan  orcid-logo
2009
Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS)

The theory of Compressive Sensing (CS) exploits a well-known concept used in signal compression – sparsity – to design new, efficient techniques for signal acquisition. CS theory states that for a length-N signal x with sparsity level K, M = O(K log(N/K)) random linear projections of x are sufficient to robustly recover x in polynomial time. However, richer models are often applicable in real-world settings that impose additional structure on the sparse nonzero coefficients of x. Many such models can be succinctly described as a union of K-dimensional subspaces. In recent work, we have developed a general approach for the design and analysis of robust, efficient CS recovery algorithms that exploit such signal models with structured sparsity. We apply our framework to a new signal model which is motivated by neuronal spike trains. We model the firing process of a single Poisson neuron with absolute refractoriness using a union of subspaces. We then derive a bound on the number of random projections M needed for stable embedding of this signal model, and develop a algorithm that provably recovers any neuronal spike train from M measurements. Numerical experimental results demonstrate the benefits of our model-based approach compared to conventional CS recovery techniques.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Compressive sensing recovery of spike trains using a structured sparsity model.pdf

Access type

openaccess

Size

371.32 KB

Format

Adobe PDF

Checksum (MD5)

9372f06f9f0928c5cb95044cfaba3279

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés