Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. MATHICSE Technical Report: Simulation-Based Anomaly Detection and Damage Localization: an Application to Structural Health Monitoring
 
Loading...
Thumbnail Image
working paper

MATHICSE Technical Report: Simulation-Based Anomaly Detection and Damage Localization: an Application to Structural Health Monitoring

Bigoni, Caterina  
•
Hesthaven, Jan S.  
April 10, 2019

We propose a simulation-based decision strategy for the proactive maintenance of complex structures with a particular application to structural health monitoring (SHM). The strategy is based on a data-driven approach which exploits an offine-online decomposition. A synthetic dataset is constructed offine by solving a parametric time-dependent partial differential equation for multiple input parameters, sampled from their probability distributions of natural variation. The collected time-signals, extracted at sensor locations, are used to train classiffiers at such sensor locations, thus constructing multiple databases of healthy configurations. These datasets are then used to train one class Support Vector Machines (OC-SVMs) to detect anomalies. During the online stage, a new measurement, possibly obtained from a damaged configuration, is evaluated using the classiffiers. Information on damage is provided in a hierarchical manner: first, using a binary feedback, the entire structure response is either classifiied as inlier (healthy) or outlier (damaged). Then, for the outliers, we exploit the outputs of multiple classiffiers to retrieve information both on the severity and the spatial location of the damages. Because of the large number of signals needed to construct the datasets offline, a model order reduction strategy is implemented to reduce the computational burden. We apply this strategy to both 2D and 3D problems to mimic the vibrational behavior of complex structures under the effect of an active source and show the effectiveness of the approach for detecting and localizing cracks.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Simulation_based_anomaly_detection_and_damage_localization_CB_JHS.pdf

Access type

openaccess

Size

3.73 MB

Format

Adobe PDF

Checksum (MD5)

ef6276f9688147a12e04536a529fa18b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés