Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Metabolic uncoupling in Saccharomyces cerevisiae
 
research article

Metabolic uncoupling in Saccharomyces cerevisiae

Larsson, Christer
•
von Stockar, Urs  
•
Marison, Ian
Show more
1995
Thermochimica Acta

Aerobic chemostat cultures of S. cerevisiae were performed at different diln. rates under energy (glucose) limitation or at various extents of energy excess imposed by a N limitation. Energy excess induced metabolic uncoupling under steady-state conditions. The sp. EtOH prodn. rate was always higher the lower the feed medium N concn. throughout the whole range of diln. rates tested. In addn., the respiratory rate also increased under N limitation, for at least as long as the sp. O2 consumption rate was below the max. capacity. These results imply that the ATP yield (YATP in g biomass per mol ATP) and/or the amt. of ATP produced, i.e. the P/O ratio, must be able to change. By assuming a const. YATP of 16 g/mol, a decrease in the P/O ratio from 1 to 1.5 at low diln. rates and glucose limitation down to only 0.1-0.2 at high diln. rates and N limitation could be calcd. If, instead, a fixed P/O ratio of 1.0 was assumed, the YATP decreased from .apprx.20 down to <10 g/mol during these different conditions. The heat yield values, i.e., the amt. of heat produced per amt. of biomass formed, increased dramatically when the cells were subjected to a N limitation, indicating less efficient growth in terms of conserving substrate energy as biomass under energy excess compared to energy-limiting conditions. [on SciFinder (R)]

  • Details
  • Metrics
Type
research article
DOI
10.1016/0040-6031(94)02055-S
Web of Science ID

WOS:A1995QP25600014

Author(s)
Larsson, Christer
von Stockar, Urs  
Marison, Ian
Gustafsson, Lena
Date Issued

1995

Published in
Thermochimica Acta
Volume

251

Start page

99

End page

110

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LGCB  
Available on Infoscience
February 27, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/225987
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés