Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Integrated learning-based point cloud compression for geometry and color with graph Fourier transforms
 
conference paper

Integrated learning-based point cloud compression for geometry and color with graph Fourier transforms

Lazzarotto, Davi
•
Ebrahimi, Touradj  
October 3, 2022
Applications of Digital Image Processing XLV
SPIE Optical Engineering + Applications

Point cloud representation is a popular modality to code immersive 3D contents. Several solutions and standards have been recently proposed in order to efficiently compress the large volume of data that point clouds require, in order to make them feasible for real-life applications. Recent studies adopting learning-based methods for point cloud compression have demonstrated high compression efficiency specially when compared to the conventional compression standards. However, they are mostly evaluated either on geometry or color separately, and no learning-based joint codec with performance comparable to state-of-the-art methods have been proposed. In this paper, we propose an integrated learned coding architecture by joining a previously proposed geometry coding module based on three-dimensional convolutional layers with a color compression method relying on graph Fourier transform (GFT) using a learning-based mean and scale hyperprior to compress the obtained coefficients. Evaluation on a test set with dense point clouds shows that the proposed method outperforms GPCC and achieves competitive performance with V-PCC when evaluated with state-of-the-art objective quality metrics.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Lazzarotto_SPIE_22.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

n/a

Size

4.15 MB

Format

Adobe PDF

Checksum (MD5)

7a06c609250ff4524eb980fd6608ac94

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés