Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A dimension reduction technique for estimation in linear mixed models
 
conference paper

A dimension reduction technique for estimation in linear mixed models

de Carvalho, M.  
•
Fonseca, M.
•
Oliveira, M.
Show more
2012
Journal Of Statistical Computation And Simulation
Conference of the LinStat

This paper proposes a dimension reduction technique for estimation in linear mixed models. Specifically, we show that in a linear mixed model, the maximum-likelihood (ML) problem can be rewritten as a substantially simpler optimization problem which presents at least two main advantages: the number of variables in the simplified problem is lower and the search domain of the simplified problem is a compact set. Whereas the former advantage reduces the computational burden, the latter permits the use of stochastic optimization methods well qualified for closed bounded domains. The developed dimension reduction technique makes the computation of ML estimates, for fixed effects and variance components, feasible with large computational savings. Computational experience is reported here with the results evidencing an overall good performance of the proposed technique.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

paper.pdf

Access type

openaccess

Size

368.74 KB

Format

Adobe PDF

Checksum (MD5)

19ad8c27c5c9fa134de5ccf754d8df34

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés