Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Model predictive controllers for Reduction of Mechanical Fatigue in Wind Farms
 
research article

Model predictive controllers for Reduction of Mechanical Fatigue in Wind Farms

Riverso, S.
•
Mancini, S.
•
Sarzo, F.
Show more
2017
IEEE Transactions on Control Systems Technology

We consider the problem of dispatching wind farm (WF) power demand to individual wind turbines (WTs) with the goal of minimizing mechanical stresses. We assume that wind is strong enough to let each WTs produce the required power and propose different closed-loop model predictive control (MPC) dispatching algorithms. Similar to the existing approaches based on MPC, our methods do not require to replace WT hardware components, but only software changes in the supervisory control and data acquisition (SCADA) system or integration with the middleware system of the WF. However, differently from other MPC schemes, we augment the model of a WT with an auto regressive moving average (ARMA) predictor of the wind turbulence, which captures the wind dynamics over the MPC control horizon. This allows us to develop both stochastic and deterministic MPC algorithms. In order to compare different MPC schemes and demonstrate improvements with respect to classic open-loop schedulers, we performed simulations using the SimWindFarm toolbox for MATLAB. We show that MPC controllers allow to achieve reduction of stresses even in the case of large installations, such as the 100-WTs Thanet offshore WF.

  • Details
  • Metrics
Type
research article
DOI
10.1109/TCST.2016.2572170
Author(s)
Riverso, S.
Mancini, S.
Sarzo, F.
Ferrari-Trecate, G.
Date Issued

2017

Published in
IEEE Transactions on Control Systems Technology
Volume

25

Issue

2

Start page

535

End page

549

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
SCI-STI-GFT  
Available on Infoscience
January 10, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/132547
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés