Deepwater Renewal in a Large, Deep Lake (Lake Geneva): Identifying and Quantifying Winter Cooling Processes Using Heat Budget Decomposition
Wintertime deepwater renewal, which is important for heat-oxygen-nutrient exchange in lakes, is traditionally considered to be mainly driven by 1D vertical convective cooling. However, differential cooling between shallow and deep waters can produce density currents that flow into deep layers. In order to determine the role that these two cooling processes play in deepwater renewal, field measurements and 3D numerical modeling were combined to investigate heat content dynamics in Lake Geneva's large basin, the Grand Lac (maximum depth 309 m), during an exceptionally cold air spell in early 2012 where complete overturning had been reported. In a novel approach, the heat budget of the lake was decomposed, which allowed the identification and quantification of the heat budget components. The heat budget decomposition revealed that vertical convective cooling only penetrated to 200 m and that lateral advection was not only caused by density currents being discharged from the shallow littoral zone of the Grand Lac, but also from the Lake's shallow Petit Lac basin (maximum depth 75 m); the latter was found to be the main driver of heat content decrease in the deep layers of the Grand Lac below similar to 200-m depth. These findings provide unique insight into heat exchange processes that cannot be obtained from field data or numerical simulations alone. Heat budget decomposition proved to be a powerful, universally applicable tool for quantifying the contribution of alternative deepwater renewal processes. This is important, since deepwater renewal by convective cooling is weakening due to persistent global warming.
WOS:001204657400001
2024-04-01
60
4
e2023WR034936
REVIEWED
Funder | Grant Number |
Swiss National Science Foundation (SNSF) | 178866 |