Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway
 
research article

Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway

Stenbak, Carolyn R.
•
Ryu, Ji-Hwan
•
Leulier, François
Show more
2004
The Journal of Immunology

Innate immune recognition of microbes is a complex process that can be influenced by both the host and the microbe. Drosophila uses two distinct immune signaling pathways, the Toll and immune deficiency (Imd) pathways, to respond to different classes of microbes. The Toll pathway is predominantly activated by Gram-positive bacteria and fungi, while the Imd pathway is primarily activated by Gram-negative bacteria. Recent work has suggested that this differential activation is achieved through peptidoglycan recognition protein (PGRP)-mediated recognition of specific forms of peptidoglycan (PG). In this study, we have further analyzed the specific PG molecular requirements for Imd activation through the pattern recognition receptor PGRP-LC in both cultured cell line and in flies. We found that two signatures of Gram-negative PG, the presence of diaminopimelic acid in the peptide bridge and a 1,6-anhydro form of N-acetylmuramic acid in the glycan chain, allow discrimination between Gram-negative and Gram-positive bacteria. Our results also point to a role for PG oligomerization in Imd activation, and we demonstrate that elements of both the sugar backbone and the peptide bridge of PG are required for optimum recognition. Altogether, these results indicate multiple requirements for efficient PG-mediated activation of the Imd pathway and demonstrate that PG is a complex immune elicitor.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

J Immunol-2004-Stenbak-7339-48.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

1.17 MB

Format

Adobe PDF

Checksum (MD5)

42d0291133bc31f3c1b9be48a63f84be

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés