Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Perovskite/Silicon Tandem Solar Cells Above 30% Conversion Efficiency on Submicron-Sized Textured Czochralski-Silicon Bottom Cells with Improved Hole-Transport Layers
 
research article

Perovskite/Silicon Tandem Solar Cells Above 30% Conversion Efficiency on Submicron-Sized Textured Czochralski-Silicon Bottom Cells with Improved Hole-Transport Layers

Harter, Angelika
•
Artuk, Kerem  
•
Mathies, Florian
Show more
November 13, 2024
ACS Applied Materials & Interfaces

In perovskite/silicon tandem solar cells, the utilization of silicon heterojunction (SHJ) solar cells as bottom cells is one of the most promising concepts. Here, we present optimization strategies for the top cell processing and their integration into SHJ bottom cells based on industrial Czochralski (Cz)-Si wafers of 140 μm thickness. We show that combining the self-assembled monolayer [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) with an additional phosphonic acid (PA) with different functional groups, can improve film formation when used as a hole transport layer improving wettability, minimizing shunt fraction and reducing nonradiative losses at the buried interface. Transient surface photovoltage and transient photoluminescence measurements confirm that the combined Me-4PACz/PA layer has similar charge transport properties to Me-4PACz alone. Moreover, this work demonstrates the potential for thin, double-side submicron-sized textured industry-relevant silicon bottom cells yielding a high accumulated short-circuit current density of 40.2 mA/cm2 and reaching a stabilized power conversion efficiency of >30%. This work paves the way toward industry-compatible, highly efficient tandem cells based on a production-compatible SHJ bottom cell.

  • Details
  • Metrics
Type
research article
DOI
10.1021/acsami.4c09264
Scopus ID

2-s2.0-85208220336

PubMed ID

39472461

Author(s)
Harter, Angelika

Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)

Artuk, Kerem  

École Polytechnique Fédérale de Lausanne

Mathies, Florian

Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)

Karalis, Orestis

Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)

Hempel, Hannes

Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)

Al-Ashouri, Amran

Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)

Albrecht, Steve

Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)

Schlatmann, Rutger

Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)

Ballif, Christophe  

École Polytechnique Fédérale de Lausanne

Stannowski, Bernd

Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)

Show more
Date Issued

2024-11-13

Published in
ACS Applied Materials & Interfaces
Volume

16

Issue

45

Start page

62817

End page

62826

Subjects

co-assembly

•

perovskite/silicon tandem solar cells

•

photovoltaics

•

self-assembled monolayer

•

submicron-sized texture

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
PV-LAB  
FunderFunding(s)Grant NumberGrant URL

Deniz Turkay

Swiss Federal Office of Energy

PRESTO

Show more
Available on Infoscience
January 25, 2025
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/244053
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés