Techno-economic design of hybrid electric vehicles using multi objective optimization techniques
The improvement of the efficiency of vehicle energy systems promotes an active search to find innovative solutions during the design process. Engineers can use computer-aided processes to find automatically the best design solutions. This kind of approach named “multi-objective optimization” is based on genetic algorithms. The idea is to obtain simultaneously a population of possible design solutions corresponding to the most efficient energy system definition for a vehicle. These solutions will be optimal from technical and economic point of view. In this article this kind of “genetic intelligence” is tested for the holistic design of the optimal vehicle powertrain solutions and their optimal operating strategies. The methodology is applied on D class hybrid electric vehicles, in order to define the powertrain configurations, to estimate the cost of the powertrain equipment and to show the environmental impact of the technical choices. The optimal designs and operating strategies are researched for different vehicle usages – normalized, urban and long way driving.
1-s2.0-S0360544215011494-main.pdf
Publisher's version
restricted
4.16 MB
Adobe PDF
e5f459ce5a2620679a5b57a2abc9d453
Techno – economic design of hybrid electric vehicles using multi objective optimization techniques.pdf
Postprint
openaccess
3.38 MB
Adobe PDF
66555a47bfdda0ac781f28226f6ea5e1