Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A Holistic Data-Driven Approach to Synthesis Predictions of Colloidal Nanocrystal Shapes
 
research article

A Holistic Data-Driven Approach to Synthesis Predictions of Colloidal Nanocrystal Shapes

Zaza, Ludovic  
•
Ranković, Bojana  
•
Schwaller, Philippe  
Show more
2025
Journal of the American Chemical Society

The ability to precisely design colloidal nanocrystals (NCs) has far-reaching implications in optoelectronics, catalysis, biomedicine, and beyond. Achieving such control is generally based on a trial-and-error approach. Data-driven synthesis holds promise to advance both discovery and mechanistic knowledge. Herein, we contribute to advancing the current state of the art in the chemical synthesis of colloidal NCs by proposing a machine-learning toolbox that operates in a low-data regime, yet comprehensive of the most typical parameters relevant for colloidal NC synthesis. The developed toolbox predicts the NC shape given the reaction conditions and proposes reaction conditions given a target NC shape using Cu NCs as the model system. By classifying NC shapes on a continuous energy scale, we synthesize an unreported shape, which is the Cu rhombic dodecahedron. This holistic approach integrates data-driven and computational tools with materials chemistry. Such development is promising to greatly accelerate materials discovery and mechanistic understanding, thus advancing the field of tailored materials with atomic-scale precision tunability.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

zaza-et-al-2025-a-holistic-data-driven-approach-to-synthesis-predictions-of-colloidal-nanocrystal-shapes.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

7.46 MB

Format

Adobe PDF

Checksum (MD5)

4e4edc075c2f303041ed683af1360b79

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés