Portable bioluminescent platform for in vivo monitoring of biological processes in non-transgenic animals
Bioluminescent imaging (BLI) is one of the most powerful and widely used preclinical imaging modalities. However, the current technology relies on the use of transgenic luciferase-expressing cells and animals and therefore can only be applied to a limited number of existing animal models of human disease. Here, we report the development of a "portable bioluminescent" (PBL) technology that overcomes most of the major limitations of traditional BLI. We demonstrate that the PBL method is capable of noninvasive measuring the activity of both extracellular (e.g., dipeptidyl peptidase 4) and intracellular (e.g., cytochrome P450) enzymes in vivo in non-luciferase-expressing mice. Moreover, we successfully utilize PBL technology in dogs and human cadaver, paving the way for the translation of functional BLI to the noninvasive quantification of biological processes in large animals. The PBL methodology can be easily adapted for the noninvasive monitoring of a plethora of diseases across multiple species. Bioluminescence imaging tends to rely on transgenic luciferase-expressing cells and animals. Here the authors report a portable bioluminescent system to non-invasively measure intra- and extracellular enzymes in vivo in non-transgenic animals which do not express luciferase.
s41467-021-22892-9.pdf
Publisher's version
openaccess
CC BY
3.24 MB
Adobe PDF
dc465dbffbb8e62b6a06e3991d65ed4c