Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Testing Theories of the Glass Transition with the Same Liquid but Many Kinetic Rules
 
research article

Testing Theories of the Glass Transition with the Same Liquid but Many Kinetic Rules

Gavazzoni, Cristina
•
Brito, Carolina
•
Wyart, Matthieu  
June 11, 2024
Physical Review Letters

We study the glass transition by exploring a broad class of kinetic rules that can significantly modify the normal dynamics of supercooled liquids while maintaining thermal equilibrium. Beyond the usual dynamics of liquids, this class includes dynamics in which a fraction ( 1 - f R ) of the particles can perform pairwise exchange or "swap moves, " while a fraction f P of the particles can move only along restricted directions. We find that (i) the location of the glass transition varies greatly but smoothly as f P and f R change and (ii) it is governed by a linear combination of f P and f R . (iii) Dynamical heterogeneities (DHs) are not governed by the static structure of the material; their magnitude correlates instead with the relaxation time. (iv) We show that a recent theory for temporal growth of DHs based on thermal avalanches holds quantitatively throughout the ( f R ; f P ) diagram. These observations are negative items for some existing theories of the glass transition, particularly those reliant on growing thermodynamic order or locally favored structure, and open new avenues to test other approaches, as we illustrate.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés