Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Poly(ADP-ribose) polymerase-2 [corrected] controls adipocyte differentiation and adipose tissue function through the regulation of the activity of the retinoid X receptor/peroxisome proliferator-activated receptor-gamma [corrected] heterodimer
 
research article

Poly(ADP-ribose) polymerase-2 [corrected] controls adipocyte differentiation and adipose tissue function through the regulation of the activity of the retinoid X receptor/peroxisome proliferator-activated receptor-gamma [corrected] heterodimer

Bai, Péter
•
Houten, Sander M
•
Huber, Aline
Show more
2007
Journal of Biological Chemistry

The peroxisome proliferator-activated receptor-gamma (PPARgamma, NR1C3) in complex with the retinoid X receptor (RXR) plays a central role in white adipose tissue (WAT) differentiation and function, regulating the expression of key WAT proteins. In this report we show that poly(ADP-ribose) polymerase-2 (PARP-2), also known as an enzyme participating in the surveillance of the genome integrity, is a member of the PPARgamma/RXR transcription machinery. PARP-2(-/-) mice accumulate less WAT, characterized by smaller adipocytes. In the WAT of PARP-2(-/-) mice the expression of a number of PPARgamma target genes is reduced despite the fact that PPARgamma1 and -gamma2 are expressed at normal levels. Consistent with this, PARP-2(-/-) mouse embryonic fibroblasts fail to differentiate to adipocytes. In transient transfection assays, PARP-2 small interference RNA decreases basal activity and ligand-dependent activation of PPARgamma, whereas PARP-2 overexpression enhances the basal activity of PPARgamma, although it does not change the maximal ligand-dependent activation. In addition, we show a DNA-dependent interaction of PARP-2 and PPARgamma/RXR heterodimer by chromatin immunoprecipitation. In combination, our results suggest that PARP-2 is a novel cofactor of PPARgamma activity.

  • Details
  • Metrics
Type
research article
DOI
10.1074/jbc.M701021200
PubMed ID

17951580

Author(s)
Bai, Péter
Houten, Sander M
Huber, Aline
Schreiber, Valérie
Watanabe, Mitsuhiro
Kiss, Borbála
de Murcia, Gilbert
Auwerx, Johan  
Ménissier-de Murcia, Josiane
Date Issued

2007

Published in
Journal of Biological Chemistry
Volume

282

Issue

52

Start page

37738

End page

46

Subjects

Gene Expression Regulation

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LISP  
Available on Infoscience
April 2, 2009
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/36545
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés