Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Volterra series for solving weakly non-linear partial differential equations: application to a dissipative Burger's equation
 
Loading...
Thumbnail Image
research article

Volterra series for solving weakly non-linear partial differential equations: application to a dissipative Burger's equation

Hélie, T.
•
Hasler, M.  
2004
International Journal of Control

A method to solve weakly non-linear partial differential equations with Volterra series is presented in the context of single-input systems. The solution x(z,t) is represented as the output of a z-parameterized Volterra system, where z denotes the space variable, but z could also have a different meaning or be a vector. In place of deriving the kernels from purely algebraic equations as for the standard case of ordinary differential systems, the problem turns into solving linear differential equations. This paper introduces the method on an example: a dissipative Burgers'equation which models the acoustic propagation and accounts for the dominant effects involved in brass musical instruments. The kernels are computed analytically in the Laplace domain. As a new result, writing the Volterra expansion for periodic inputs leads to the analytic resolution of the harmonic balance method which is frequently used in acoustics. Furthermore, the ability of the Volterra system to treat other signals constitutes an improvement for the sound synthesis. It allows the simulation for any regime, including attacks and transients. Numerical simulations are presented and their validity are discussed.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

IJC_published_p1071.pdf

Access type

restricted

Size

338.75 KB

Format

Adobe PDF

Checksum (MD5)

84a51bd42e4a60d3f908e1089858045a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés