Loading...
research article
Correspondence functors and duality
March 1, 2023
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable properties. In particular, their evaluation at any finite set is always a free k-module and an explicit formula is obtained for its rank. The results use some subtle new ingredients from the theory of finite lattices. (c) 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Type
research article
Web of Science ID
WOS:000918158600015
Authors
Publication date
2023-03-01
Publisher
Published in
Volume
617
Start page
425
End page
475
Peer reviewed
REVIEWED
Written at
EPFL
EPFL units
Available on Infoscience
March 13, 2023
Use this identifier to reference this record