Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Wire-sawing processes: parametrical study and modeling
 
research article

Wire-sawing processes: parametrical study and modeling

Bidiville, A.
•
Wasmer, K.
•
Van Der Meer, M.  
Show more
2015
Solar Energy Materials And Solar Cells

Reducing the wafer breakage rate without changing the wafer thickness and sawing thinner wafers while maintaining constant breakage rate are two possibilities to decrease the costs of solar cells. They are similar in the sense that both require stronger wafers. To achieve this goal, it is important to gain insight into the wire-sawing process, its underlying defect creation mechanisms and the impact of sawing parameters on wafer strength. Consequently, a series of bricks were sawn with different slurry densities, wire tensions and feed rates, and the results were analyzed in terms of the wafer strength measured by bending tests. Roughness and wafer thickness were also measured. It is found that the strongest wafers were obtained by using a low abrasive volume fraction in the slurry, a low wire tension and a slow feed rate. From the analyses, we provide a qualitative interpretation of the effects of the processes at work in slurry-based wafering that explains, for instance, the wafer thickness and roughness variations. Based on physical arguments about the interaction between the wire, the silicon carbide particles and the silicon wafer, a semi-empirical model relating defect creation to the sawing parameters is developed. With this model, the wafer strength distribution can be predicted, thus simplifying optimization of the sawing process. (C) 2014 Elsevier B.V. All rights reserved.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

paper_774.pdf

Type

Publisher's Version

Version

Published version

Access type

restricted

Size

1.71 MB

Format

Adobe PDF

Checksum (MD5)

010ca597c237730293e1ddc95bde09bc

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés