Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification
 
research article

Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification

Kaarnioja, Vesa
•
Kazashi, Yoshihito  
•
Kuo, Frances Y.
Show more
2022
Numerische Mathematik

This paper deals with the kernel-based approximation of a multivariate periodic function by interpolation at the points of an integration lattice-a setting that, as pointed out by Zeng et al. (Monte Carlo and Quasi-Monte Carlo Methods 2004, Springer, New York, 2006) and Zeng et al. (Constr. Approx. 30: 529-555, 2009), allows fast evaluation by fast Fourier transform, so avoiding the need for a linear solver. The main contribution of the paper is the application to the approximation problem for uncertainty quantification of elliptic partial differential equations, with the diffusion coefficient given by a random field that is periodic in the stochastic variables, in the model proposed recently by Kaarnioja et al. (SIAM J Numer Anal 58(2): 1068-1091, 2020). The paper gives a full error analysis, and full details of the construction of lattices needed to ensure a good (but inevitably not optimal) rate of convergence and an error bound independent of dimension. Numerical experiments support the theory.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s00211-021-01242-3.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.23 MB

Format

Adobe PDF

Checksum (MD5)

6ec4465635b8aa00014d8fc782d0adfd

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés