Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Microsecond melting and revitrification of cryo samples: protein structure and beam-induced motion
 
Loading...
Thumbnail Image
research article

Microsecond melting and revitrification of cryo samples: protein structure and beam-induced motion

Harder, Oliver Florian  
•
Voss, Jonathan Mark  
•
Olshin, Pavel  
Show more
June 14, 2022
Acta Crystallographica Section D: Structural Biology

A novel approach to time-resolved cryo-electron microscopy (cryo-EM) has recently been introduced that involves melting a cryo sample with a laser beam to allow protein dynamics to briefly occur in the liquid, before trapping the particles in their transient configurations by rapidly revitrifying the sample. With a time resolution of just a few microseconds, this approach is notably fast enough to study the domain motions that are typically associated with the activity of proteins but which have previously remained inaccessible. Here, crucial details are added to the characterization of the method. It is shown that single-particle reconstructions of apoferritin and Cowpea chlorotic mottle virus from revitrified samples are indistinguishable from those from conventional samples, demon- strating that melting and revitrification leaves the particles intact and that they do not undergo structural changes within the spatial resolution afforded by the instrument. How rapid revitrification affects the properties of the ice is also characterized, showing that revitrified samples exhibit comparable amounts of beam-induced motion. The results pave the way for microsecond time-resolved studies of the conformational dynamics of proteins and open up new avenues to study the vitrification process and to address beam-induced specimen move- ment.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Publication.pdf

Type

Publisher

Access type

openaccess

License Condition

CC BY

Size

1.32 MB

Format

Adobe PDF

Checksum (MD5)

68e93ce22da15b16a527637a202f7783

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés