Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. An Adaptive Total Variation Model for Image Segmentation
 
report

An Adaptive Total Variation Model for Image Segmentation

Petrovic, A.
•
Vandergheynst, P.  
2005

In our previous work, tracking the iso-level sets through total variation scale-space proved to be a very efficient tool for unsupervised segmentation. Stepping on these results, we propose a new segmentation approach in a unified total variation framework. The main idea is to use the total variation energy at each scale to drive the region merging process. We show that this total variation formulation, which was originally proposed for restoration and enhancement, is also well suited for segmentation. In addition, this energy functional can be derived from a Bayesian principle using a Markov random field prior. We demonstrate the effectiveness of our method on gray scale, noisy, color and texture images.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Petrovic2005_1402.pdf

Access type

openaccess

Size

498.04 KB

Format

Adobe PDF

Checksum (MD5)

188b45f16ad3f825d622353a8884ff3f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés