Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Extending Urban Air Quality Maps Beyond the Coverage of a Mobile Sensor Network: Data Sources, Methods, and Performance Evaluation
 
conference paper

Extending Urban Air Quality Maps Beyond the Coverage of a Mobile Sensor Network: Data Sources, Methods, and Performance Evaluation

Marjovi, Ali  
•
Arfire, Adrian  
•
Martinoli, Alcherio  
2017
Proceedings of the International Conference on Embedded Wireless Systems and Networks
International Conference on Embedded Wireless Systems and Networks (EWSN)

Targeting the problem of generating high-resolution air quality maps for cities, we leverage four different sources of data: (i) in-situ air quality measurements produced by our mobile sensor network deployed on public transportation vehicles, (ii) explanatory air-quality and meteorological variables obtained from two static monitoring stations, (iii) land-use data of the city, and (iv) traffic statistics. We propose two novel approaches for estimating the targeted pollutant level at desired time-location pairs, extending also to areas of the city that are beyond the coverage of our mobile sensor network. The first is a log-linear regression model which is built over a virtual dependency graph based on land-use data. The second is a deep learning framework that automatically captures the dependencies of the data based on autoencoders. We have evaluated the two proposed approaches against three canonical modeling techniques considering metrics of coefficient of determination (R-squared), root mean square error (RMSE), and the fraction of predictions within a factor of two of observations (FAC2). Using more than 45 million real measurements in the models, the results show consistently superior performance in respect to the canonical techniques.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Marjovi_Ewsn_2017.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

copyright

Size

14.12 MB

Format

Adobe PDF

Checksum (MD5)

3989707ceb8415cbbf8295612b44b175

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés