Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. IMVEST, an immersive multimodal virtual environment stress test for humans that adjusts challenge to individual's performance
 
research article

IMVEST, an immersive multimodal virtual environment stress test for humans that adjusts challenge to individual's performance

Rodrigues, João  
•
Studer, Erik  
•
Streuber, Stephan  
Show more
August 13, 2021
Neurobiology of Stress

Laboratory stressors are essential tools to study the human stress response. However, despite considerable progress in the development of stress induction procedures in recent years, the field is still missing standardization and the methods employed frequently require considerable personnel resources. Virtual reality (VR) offers flexible solutions to these problems, but available VR stress-induction tests still contain important sources of variation that challenge data interpretation. One of the major drawbacks is that tasks based on motivated performance do not adapt to individual abilities. Here, we provide open access to, and present, a novel and standardized immersive multimodal virtual environment stress test (IMVEST) in which participants are simultaneously exposed to mental -arithmetic calculations- and environmental challenges, along with intense visual and auditory stimulation. It contains critical elements of stress elicitation – perceived threat to physical self, social-evaluative threat and negative feedback, uncontrollability and unpredictability – and adjusts mathematical challenge to individual's ongoing performance. It is accompanied by a control VR scenario offering a comparable but not stressful situation. We validate and characterize the stress response to IMVEST in one-hundred-and-eighteen participants. Both cortisol and a wide range of autonomic nervous system (ANS) markers – extracted from the electrocardiogram, electrodermal activity and respiration – are significantly affected. We also show that ANS features can be used to train a stress prediction machine learning model that strongly discriminates between stress and control conditions, and indicates which aspects of IMVEST affect specific ANS components.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S2352289521000904-main.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.57 MB

Format

Adobe PDF

Checksum (MD5)

361fcbf19197e342c9bac5bc830d0863

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés