Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Role of Point-Defects in the Silicon Diffusion in Gaas and Al0.3ga0.7as and in the Related Superlattice Disordering
 
research article

Role of Point-Defects in the Silicon Diffusion in Gaas and Al0.3ga0.7as and in the Related Superlattice Disordering

Pavesi, L.
•
Ky, N. H.
•
Ganiere, J. D.  
Show more
1992
Journal of Applied Physics

The mechanism of silicon diffusion in GaAs, Al0.3Ga0.7As, and the silicon diffusion-induced layer disordering of multiquantum wells have been studied by photoluminescence, secondary-ion-mass spectroscopy, and transmission electron microscopy across a corner of a wedge-shaped sample. The diffusion source was a grown in highly Si-doped layer. The main photoluminescence properties of point defects in GaAs and Al0.3Ga0.7As are reviewed to interpret the experimental data. The depth profile of the photoluminescence allows the spatial correlation between the luminescence spectra and the Si concentration profile obtained from secondary-ion-mass-spectroscopy measurements. On the basis of the photoluminescence results, the physical processes occurring during the Si diffusion are discussed. Frenkel defects (pairs of element-III vacancies and interstitials) are generated in the highly Si-doped region. The element-III interstitials rapidly diffuse towards the surface where they react with the element-III vacancies generated at the surface when annealing is performed in an external As pressure. This induces a supersaturation of element-III vacancies in the Si-doped region which drives the Si diffusion. Annealing in vacuum reduces the oversaturation of element-III vacancies and, hence, reduces the Si diffusion. A domination of the Si donor-element-III vacancy complex emission band was found in the spectra taken in the Si-diffused region. This gives evidence for the vacancy-assisted mechanism in the Si diffusion and in the impurity-induced disordering.

  • Details
  • Metrics
Type
research article
DOI
10.1063/1.351120
Web of Science ID

WOS:A1992HF69000021

Author(s)
Pavesi, L.
Ky, N. H.
Ganiere, J. D.  
Reinhart, F. K.
Babaali, N.
Harrison, I.
Tuck, B.
Henini, M.
Date Issued

1992

Published in
Journal of Applied Physics
Volume

71

Issue

5

Start page

2225

End page

2237

Subjects

MOLECULAR-BEAM EPITAXY

•

ELECTRONIC-STRUCTURE

•

IMPURITY DIFFUSION

•

PHOTO-LUMINESCENCE

•

GALLIUM-ARSENIDE

•

PHOTOLUMINESCENCE

•

ALXGA1-XAS

•

HETEROSTRUCTURES

•

SEMICONDUCTORS

•

RESONANCE

•

PHOTOLUMINESCENCE

Note

Swiss fed inst technol,inst micro & optoelectr,ch-1015 lausanne,switzerland. univ nottingham,dept electr & elect engn,nottingham ng7 2rd,england. univ nottingham,dept phys,nottingham ng7 2rd,england. Pavesi, l, univ trento,dept phys,i-38050 trent,italy.

ISI Document Delivery No.: HF690

Cited Reference Count: 40

Cited References:

1991, OPT QUANT ELECTRON, V23, P5779

BABAALI N, 1990, 12TH P INT C EL MICR

BARAFF GA, 1980, PHYS REV B, V21, P5662

BARAFF GA, 1985, PHYS REV LETT, V55, P1327

BARAFF GA, 1985, PHYS REV LETT, V55, P2340

BARAFF GA, 1986, PHYS REV B, V33, P7346

BORGHS G, 1989, J APPL PHYS, V66, P4381

BOURGAUD F, 1990, AGRONOMIE, V10, P1

BUGAJSKI M, 1989, J APPL PHYS, V65, P596

DEAN PJ, 1982, PROG CRYST GROWTH CH, V5, P89

DEPPE DG, 1988, J APPL PHYS, V64, P1838

DEPPE DG, 1988, J APPL PHYS, V64, R93

FOCKELE M, 1989, PHYS REV B, V40, P2001

GANIERE JD, 1989, J MICROSC SPECTROSC, V14, P407

GREINER ME, 1985, J APPL PHYS, V57, P5181

HENNING JCM, 1988, SEMICOND SCI TECH, V3, P361

KENNEDY TA, 1986, PHYS REV LETT, V57, P2690

KY NH, 1991, J APPL PHYS, V69, P7585

KY NH, 1991, J APPL PHYS, V70, P3087

LAIDIG WD, 1981, APPL PHYS LETT, V38, P776

MENDEZ EE, 1983, J APPL PHYS, V54, P4202

MURRAY R, 1989, J APPL PHYS, V66, P2589

NISSEN MK, 1990, PHYS REV LETT, V65, P2282

OELGART G, 1990, SEMICOND SCI TECH, V5, P894

OGAWA J, 1988, J APPL PHYS, V63, P2765

OHHORI T, 1987, J APPL PHYS, V61, P4603

PAVESI L, 1990, PROPERTIES GALLIUM A, P529

PAVESI L, 1991, OPT QUANTUM ELECT, V23, S789

PUSKA MJ, 1989, J PHYS-CONDENS MAT, V1, P7347

SAKAMOTO M, 1984, J APPL PHYS, V55, P3613

SOUZA P, 1988, SOLID STATE COMMUN, V67, P923

SUEZAWA M, 1991, J APPL PHYS, V69, P1618

TAJIMA M, 1988, APPL PHYS LETT, V53, P959

TAN TY, 1991, CRIT REV SOLID STATE, V17, P47

TANG X, 1991, J APPL PHYS, V69, P3278

VANDEVEN J, 1986, J APPL PHYS, V60, P3735

VISSER EP, 1991, J APPL PHYS, V69, P3266

WILLIAMS EW, 1972, SEMICONDUCT SEMIMET, V8, P321

XU HQ, 1990, PHYS REV B, V41, P5979

YU S, 1989, J APPL PHYS, V66, P2952

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LOEQ  
Available on Infoscience
August 31, 2007
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/11057
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés