Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A Sequential Topic Model for Mining Recurrent Activities from Long Term Video Logs
 
research article

A Sequential Topic Model for Mining Recurrent Activities from Long Term Video Logs

Varadarajan, Jagannadan  
•
Emonet, Remi
•
Odobez, Jean-Marc  
2013
International Journal Of Computer Vision

This paper introduces a novel probabilistic activity modeling approach that mines recurrent sequential patterns called motifs from documents given as word×time count matrices (e.g., videos). In this model, documents are represented as a mixture of sequential activity patterns (our motifs) where the mixing weights are defined by the motif starting time occurrences. The novelties are multi fold. First, unlike previous approaches where topics modeled only the co-occurrence of words at a given time instant, our motifs model the co-occurrence and temporal order in which the words occur within a temporal window. Second, unlike traditional Dynamic Bayesian Networks (DBN), our model accounts for the important case where activities occur concurrently in the video (but not necessarily in syn- chrony), i.e., the advent of activity motifs can overlap. The learning of the motifs in these difficult situations is made possible thanks to the introduction of latent variables representing the activity starting times, enabling us to implicitly align the occurrences of the same pattern during the joint inference of the motifs and their starting times. As a third novelty, we propose a general method that favors the recovery of sparse distributions, a highly desirable property in many topic model applications, by adding simple regularization constraints on the searched distributions to the data likelihood optimization criteria. We substantiate our claims with experiments on synthetic data to demonstrate the algorithm behavior, and on four video datasets with significant variations in their activity content obtained from static cameras. We observe that using low-level motion features from videos, our algorithm is able to capture sequential patterns that implicitly represent typical trajectories of scene objects.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1007/s11263-012-0596-6
Author(s)
Varadarajan, Jagannadan  
Emonet, Remi
Odobez, Jean-Marc  
Date Issued

2013

Publisher

Springer

Published in
International Journal Of Computer Vision
Volume

103

Issue

1

Start page

100

End page

126

Subjects

Unsupervised · Latent sequential patterns · Topic models · PLSA · Video surveillance · Activity analysis

•

Unsupervised

•

Latent sequential patterns

•

Topic models

•

PLSA

•

Video surveillance

•

Activity analysis

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LIDIAP  
Available on Infoscience
December 19, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/98522
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés