Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Acoustic Topological Fano Resonances
 
conference presentation

Acoustic Topological Fano Resonances

Zangeneh Nejad, Farzad  
•
Fleury, Romain  
June 17, 2019
Photonics and Electromagnetics Research Symposium

Originally discovered in the context of quantum mechanics in 1961, the ultra-sharp spectrum of the Fano resonance has nowadays established itself as centerpiece in modern engineering for realizing a large variety of prominent devices including low energy switches [1], efficient sources and emitters [2], and highly sensitive interferometers [3]. In addition, the peculiar asymmetric line shape of the Fano resonance is found to be substantially sensitive to environmental changes, establishing a unique platform for the implementation of highly sensitive sensors and actuators [4]. The excessive sensitivity of the Fano resonance to environmental and structural parameters is, however, not always desirable as it makes the practical implementation of Fano structures extremely challenging, mitigating the performance advantages obtained from Fano interference by costs related to the fabrication technology. Here, we report our recent theoretical findings and experimental observations of acoustic topological Fano resonances whose much-sought line-shapes is guaranteed by topology, offering a unique protection against geometrical tolerances. We construct such topological Fano resonances from interaction between a bright and a dark mode that both have topological origin, and demonstrate this concept experimentally for audible airborne sound in a one-dimensional acoustic scenario. By going beyond the performance degradation caused by inadvertent fabrication flaws, such protection paves the way for a new generation of Fano-based acoustic devices which, not only possess exotic properties as any other Fano structure, but also can be readily implemented in practice with very low cost [5]. 1. K. Nozaki, et al. Optics express 21.10 (2013): 11877-11888. 2. S. Chua, et al. Optics express 19.2 (2011): 1539-1562. 3. K. Heeg, et al. Physical review letters 114.20 (2015): 207401. 4. C. Wu, et al. Nature materials 11.1 (2012): 69. 5. F. Zangeneh-Nejad, and R. Fleury, Physical review letters. 122 (2019): 014301

  • Details
  • Metrics
Type
conference presentation
Author(s)
Zangeneh Nejad, Farzad  
Fleury, Romain  
Date Issued

2019-06-17

Subjects

Fano resonance

•

Topology

•

Sensing

Written at

EPFL

EPFL units
LWE  
Event nameEvent placeEvent date
Photonics and Electromagnetics Research Symposium

Rome, Italy

June 17-20, 2019

Available on Infoscience
July 8, 2019
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/158929
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés