Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Present-day sediment dynamics and provenance of the Gornergletscher
 
conference presentation

Present-day sediment dynamics and provenance of the Gornergletscher

De Doncker, Fien
•
Herman, Frédéric
•
Prasicek, Günther
Show more
2021
EGU General Assembly 2021

Glacial erosion processes shape the Earth’s surface. Nevertheless, the processes that drive glacial erosion and the subsequent export of sediments are poorly understood and quantified. These processes include ice sliding, which controls erosion by abrasion and quarrying, and meltwater availability, which is essential to flush out sediment stocks that form a protective layer of sediments impeding bedrock erosion. Mapping glacial erosion rates can help understand the role of these different processes through the spatial relationships between the subprocesses and erosion rates. Here we report timeseries of glacial erosion rate maps inferred from the inversion of suspended sediment loads and their provenance. Geographically, we focus on the Gornergletscher complex (VS, Switzerland) where we collected data for the summer of 2017. The erosion rate timeseries are then compared to records of temperature, precipitation and estimates of discharge and turbidity of the meltwater river. Erosional activity seems to increase with rising temperatures and meltwater discharge, leading to an increased proportion of suspended sediments coming from the north-eastern (and occasionally western) side of the glacier. Interestingly, the peak in sediments from the north-eastern side is always preceded by a peak in sediments from the western side of the glacier. Sediments of these two zones are predominant in the suspended load signal when the maximal temperature at the Equilibrium Line Altitude (ELA) is above 10°C and on the rising limb of the hydrograph. Furthermore, the obtained erosion rate maps suggest that sliding velocities are not the only explanatory factor of the erosion rate patterns. We therefore postulate from these preliminary results that the present-day sediment output of the Gornergletscher complex is largely influenced by short term variations in temperature and meltwater availability.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EGU21-6207-print.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

276.06 KB

Format

Adobe PDF

Checksum (MD5)

38583920a6fb15aa7932606f702344b8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés