Compensation des non-linéarités des systèmes haut-parleurs à pavillon
The assumptions of linearity and autonomy assumed in circuit theory are known to be respected only partially by electroacoustic transducers. In particular, the dynamics range of the latter is limited by the audible nonlinear effects that they are causing. In the domain of active noise control, the distortion products limit noise reduction performance. The present thesis work stems from characterization of these observations. We want to design a real-time system compensating the nonlinearities of electroacoustic devices. The first part of this report concerns the nonlinearity effects. It is shown that the use of classical characterization methods of an electroacoustic device (harmonic distortion, intermodulation, frequency difference ...) is limited. Hence, they can not be used to determine the nonlinearity laws themselves, but rather only their effects for arbitrary excitations. First, a method based on multitone harmonic excitations has been proposed and validated. It has been applied for the characterization of loudspeaker prototypes using several different technologies, which are used for active noise reduction in an aircraft turboreactor. The second part of this work addresses the elaboration and validation of a nonlinearity effect compensation method. This method is based on the description of the nonlinearities by the Volterra series. For this, we need to place an upstream system, characterized by the inverse nonlinearity law of the loudspeaker system. After having determined precisely the Volterra kernels of the system to be characterized, the kernels of the upstream compensation system are determined by assuming that their cascade obeys to a linear law. For this purpose, a kernel measurement method in the frequency domain has been developed, validated and tested. Since we are concerned with loudspeakers, we took their flying time into account. The compensation method has been validated by computing the simulated response of the compensation circuit. Resulting analog signals have then been applied to the loudspeaker. Measured performances fulfill the expectations. In the last part, the compensation method has been applied in a real-time Digital Signal Processing) DSP controller, which allowed to realize a demonstrator to the implemented for future industrial applications.
EPFL_TH3317.pdf
openaccess
7.42 MB
Adobe PDF
3f62012ea26aa289f7d2ff6a6c6eee3d