Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Spline projection-based volume-to-image registration
 
doctoral thesis

Spline projection-based volume-to-image registration

Jonic, Slavica  
2003

This thesis focuses on the rigid-body registration of a three-dimensional model of an object to a set of its two-dimensional projections. The main contribution is the development of two registration algorithms that use a continuous model of the volume based on splines, either in the space domain or in the frequency domain. This allows for a well-defined gradient of the dissimilarity measure, which is a necessary condition for efficient and accurate registration. The first part of the thesis contains a review of the literature on volume-to- image registration. Then, we discuss data interpolation in the space domain and in the frequency domain. The basic concepts of our registration strategy are given in the second part of the thesis. We present a novel one-step approach for fast ray casting to simulate space-based volume projections. We also discuss the use of the central-slice theorem to simulate frequency-based volume projections. Then, we consider the question of the registration robustness. To improve the robustness of the space-based approach, we apply a multiresolution optimization strategy where spline-based data pyramids are processed in coarse-to-fine fashion, which improves speed as well. To improve the robustness of the frequency-based registration, we apply a coarse-to-fine strategy that involves weights in the frequency domain. In the third part, we apply our space-based algorithm to computer-assisted orthopedic surgery while adapting it to the perspective projection model. We show that the registration accuracy achieved using the orthopedic data is consistent with the current standards. Then, we apply our frequency-based registration to three-dimensional electron-microscopy application. We show that our algorithm can be used to obtain a refined solution with respect to currently available algorithms. The novelty of our approach is in dealing with a continuous space of geometric parameters, contrary to the standard methods which deal with quantized parameters. We conclude that our continuous parameter space leads to better registration accuracy. Last, we compare the performance of the frequency-based algorithm with that of the space-based algorithm in the context of electron microscopy. With these data, we observe that frequency-based registration algorithm outperforms the space-based one, which we attribute to the suitability of interpolation in the frequency domain when dealing with strictly space-limited data.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH2901.pdf

Access type

openaccess

Size

4.29 MB

Format

Adobe PDF

Checksum (MD5)

9f43edb16d8ed2b0b9434e4879034328

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés