Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Protein-based bandpass filters for controlling cellular signaling with chemical inputs
 
research article

Protein-based bandpass filters for controlling cellular signaling with chemical inputs

Shui, Sailan  
•
Scheller, Leo  
•
Correia, Bruno E.  
November 13, 2023
Nature Chemical Biology

Biological signal processing is vital for cellular function. Similar to electronic circuits, cells process signals via integrated mechanisms. In electronics, bandpass filters transmit frequencies with defined ranges, but protein-based counterparts for controlled responses are lacking in engineered biological systems. Here, we rationally design protein-based, chemically responsive bandpass filters (CBPs) showing OFF-ON-OFF patterns that respond to chemical concentrations within a specific range and reject concentrations outside that range. Employing structure-based strategies, we designed a heterodimeric construct that dimerizes in response to low concentrations of a small molecule (ON), and dissociates at high concentrations of the same molecule (OFF). The CBPs have a multidomain architecture in which we used known drug receptors, a computationally designed protein binder and small-molecule inhibitors. This modular system allows fine-tuning for optimal performance in terms of bandwidth, response, cutoff and fold changes. The CBPs were used to regulate cell surface receptor signaling pathways to control cellular activities in engineered cells.|Development of chemically responsive bandpass filters mimics the signal-processing abilities of electronic circuits in mammalian cells by responding to chemical concentrations within a specific range and rejecting ones outside that range.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

document.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

3.62 MB

Format

Adobe PDF

Checksum (MD5)

571232816fec26c6c14dd9b1152bfbeb

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés