Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Increasing understanding and confidence in THM simulations of Engineered Barrier Systems
 
research article

Increasing understanding and confidence in THM simulations of Engineered Barrier Systems

Schäfers, Annika
•
Gens, Antonio
•
Rodriguez-Dono, Alfonso
Show more
2020
Environmental Geotechnics

Previous studies on the modelling of coupled thermo-hydro-mechanical (THM) processes in bentonite-based engineered barrier systems (EBSs) showed the sensitivity of the output quantities to changes in the input parameters. To investigate the effects of uncertainties on the modelling results, to improve the understanding of the coupled processes active in the repository near field and to gain in-depth understanding of model uncertainties of different codes, a sensitivity analysis and code comparison of EBS simulations was performed within the Task Force on Engineered Barrier Systems. The analysis included variations in material parameter values, boundary and initial conditions, considered physical processes and model geometries, amounting to 60 different cases. This in-depth analysis helped evaluate the influence of parameter and conceptual uncertainties on the results of coupled THM simulations and to identify key parameters and processes. The cross-code comparison encouraged a fruitful exchange among modelling teams and led to very good agreements between the results of the different codes. Serving as a benchmark example for THM-coupled simulations of bentonite-based EBSs, the study helped increase the confidence in the modelling capabilities of several codes used for safety evaluations of repositories for spent fuel and high-level radioactive waste.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

envgeo1800078_offprint ICE.pdf

Access type

restricted

Size

1.55 MB

Format

Adobe PDF

Checksum (MD5)

b28f052b2c828a6916c97fd54b8d6181

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés