Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. An analytic BPHZ theorem for regularity structures
 
preprint

An analytic BPHZ theorem for regularity structures

Chandra, Ajay
•
Hairer, Martin  
December 24, 2016

We prove a general theorem on the stochastic convergence of appropriately renormalized models arising from nonlinear stochastic PDEs. The theory of regularity structures gives a fairly automated framework for studying these problems but previous works had to expend significant effort to obtain these stochastic estimates in an ad-hoc manner. In contrast, the main result of this article operates as a black box which automatically produces these estimates for nearly all of the equations that fit within the scope of the theory of regularity structures. Our approach leverages multi-scale analysis strongly reminiscent to that used in constructive field theory, but with several significant twists. These come in particular from the presence of "positive renormalizations" caused by the recentering procedure proper to the theory of regularity structure, from the difference in the action of the group of possible renormalization operations, as well as from the fact that we allow for non-Gaussian driving fields. One rather surprising fact is that although the "canonical lift" is of course typically not continuous on any Hölder-type space containing the noise (which is why renormalization is required in the first place), we show that the "BPHZ lift" where the renormalization constants are computed using the formula given in arXiv:1610.08468, is continuous in law when restricted to a class of stationary random fields with sufficiently many moments.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1612.08138v5.pdf

Type

Main Document

Version

Submitted version (Preprint)

Access type

openaccess

License Condition

N/A

Size

1.42 MB

Format

Adobe PDF

Checksum (MD5)

77843f7ba18109dd067774c785c72e97

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés